Rho-binding kinase (LET-502) and myosin phosphatase (MEL-11) regulate cytokinesis in the early Caenorhabditis elegans embryo.
نویسندگان
چکیده
Rho-binding kinase and myosin phosphatase regulate the contraction of actomyosin filaments in non-muscle and smooth muscle cells. Previously, we described the role of C. elegans genes encoding Rho-binding kinase (let-502) and myosin phosphatase targeting subunit (mel-11) in epidermal cell-shape changes that drive morphogenesis and in spermathecal contraction. Here we analyze their roles in a third contractile event, cytokinesis within early embryos. We demonstrate that these genes function together to regulate the rate of cleavage furrow contraction, with Rho-binding kinase/LET-502 mediating contraction, whereas myosin phosphatase/MEL-11 acts as a brake to contraction: early embryonic cleavage often fails or is slowed when let-502 is mutated, whereas mel-11 mutations result in ectopic furrowing and faster furrow ingression. These phenotypes correspond to changes in the levels of phosphorylated regulatory non-muscle myosin light chain (rMLC). The gene products of let-502 and mel-11 colocalize at cleavage furrows, and their mutations alleviate one another's defects. rMLC is phosphorylated in let-502; mel-11 double mutants, indicating that a kinase is able to phosphorylate rMLC in the absence of both LET-502 and MEL-11. Genetic and molecular epistasis experiments place LET-502 and MEL-11 in a cytokinetic pathway. LET-502 and MEL-11 regulate the activity of non-muscle myosin after actin, non-muscle myosin heavy chain/NMY-2, regulatory non-muscle myosin light chain/MLC-4 and early formin/CYK-1 have formed a contractile ring. Proteins including Rho GTPase activating protein/CYK-4 and late CYK-1, which are required for late stages of cytokinesis, function downstream of LET-502 and MEL-11.
منابع مشابه
Embryonic morphogenesis in Caenorhabditis elegans integrates the activity of LET-502 Rho-binding kinase, MEL-11 myosin phosphatase, DAF-2 insulin receptor and FEM-2 PP2c phosphatase.
let-502 rho-binding kinase and mel-11 myosin phosphatase regulate Caenorhabditis elegans embryonic morphogenesis. Genetic analysis presented here establishes the following modes of let-502 action: (i) loss of only maternal let-502 results in abnormal early cleavages, (ii) loss of both zygotic and maternal let-502 causes elongation defects, and (iii) loss of only zygotic let-502 results in steri...
متن کاملThe Caenorhabditis elegans nonmuscle myosin genes nmy-1 and nmy-2 function as redundant components of the let-502/Rho-binding kinase and mel-11/myosin phosphatase pathway during embryonic morphogenesis.
Rho-binding kinase and the myosin phosphatase targeting subunit regulate nonmuscle contractile events in higher eukaryotes. Genetic evidence indicates that the C. elegans homologs regulate embryonic morphogenesis by controlling the actin-mediated epidermal cell shape changes that transform the spherical embryo into a long, thin worm. LET-502/Rho-binding kinase triggers elongation while MEL-11/m...
متن کاملpix-1 Controls Early Elongation in Parallel with mel-11 and let-502 in Caenorhabditis elegans
Cell shape changes are crucial for metazoan development. During Caenorhabditis elegans embryogenesis, epidermal cell shape changes transform ovoid embryos into vermiform larvae. This process is divided into two phases: early and late elongation. Early elongation involves the contraction of filamentous actin bundles by phosphorylated non-muscle myosin in a subset of epidermal (hypodermal) cells....
متن کاملThe role of the formin gene fhod-1 in C. elegans embryonic morphogenesis
During the second half of embryogenesis, the ellipsoidal Caenorhabditis elegans embryo elongates into a long, thin worm. This elongation requires a highly organized cytoskeleton composed of actin microfilaments, microtubules and intermediate filaments throughout the epidermis of the embryo. This architecture allows the embryonic epidermal cells to undergo a smooth muscle-like actin/myosin-based...
متن کاملTwo distinct myosin II populations coordinate ovulatory contraction of the myoepithelial sheath in the Caenorhabditis elegans somatic gonad
The myoepithelial sheath in the somatic gonad of the nematode Caenorhabditis elegans has nonstriated contractile actomyosin networks that produce highly coordinated contractility for ovulation of mature oocytes. Two myosin heavy chains are expressed in the myoepithelial sheath, which are also expressed in the body-wall striated muscle. The troponin/tropomyosin system is also present and essenti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 115 Pt 11 شماره
صفحات -
تاریخ انتشار 2002